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ABSTRACT
Pulmonary vascular tree segmentation is the fundamental ba-

sis for different applications, such as the detection and visu-

alization of pulmonary emboli (PE). Such an application re-

quires an accurate and reliable segmentation of pulmonary

vessels with varying diameters. We present a novel fuzzy

approach to pulmonary vessel segmentation in contrast en-

hanced computed tomography (CT) data that considers a ra-

dius estimate of the current vessel to adapt the segmentation

parameters. Hence, our method allows to capture even ves-

sels with small diameters while suppressing leakage into sur-

rounding structures in close proximity of vessels with large

diameters. The method has been evaluated on different chest

CT scans of patients referred for PE and demonstrates promis-

ing results. For quantitative validation, randomly selected

sub-volumes that have been semi-automatically segmented by

a medical expert have been used as reference to compare the

locally adaptive method against the same method with global

parameters.

Index Terms— Image segmentation, pulmonary blood

vessel, radius estimation, fuzzy connectedness, CT

1. INTRODUCTION

Pulmonary vessel segmentation in CT data is applied in nu-

merous medical applications including detection and visual-

ization of PE and quantitative vessel analysis. Different appli-

cations have varying requirements. For example it has been

shown in the context of PE detection, that providing a 3D

visualization of pulmonary arteries in combination with the

traditional 2D examination offers significantly better sensitiv-

ity results [1]. Hence it is desirable to segment vessels with

varying diameters robustly, since each missed vessel is lost

for further diagnostic steps.

Typical segmentation approaches include threshold-based

approaches [2], fast marching techniques [3], and fuzzy meth-

ods [4]. All these methods have in common that an intensity
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model of pulmonary vessels is directly or indirectly utilized

to detect and delineate the object of interest. However, due to

various reasons, e.g., unequal distribution of the used contrast

agent and partial volume effects, one can observe that the in-

tensity profile of small vessels significantly differs from that

of larger vessels. Consequently, methods using a global in-

tensity model tend to leak into surrounding non-vessel struc-

tures in some areas while missing other, particularly smaller

vessels (see Fig. 2). We therefore present a method to adapt

the expected intensity distribution to the local vessel to be

segmented and incorporate it into a fully-automatic segmen-

tation method [4] based on the fuzzy connectedness algo-

rithm [5]. To this end, we estimate the radius of the vessel

to be segmented by identifying vessel surface points using a

mean shift-based ray propagation technique [6] and use this

measure to adapt the segmentation parameters locally. Hence,

our method allows to capture vessels with small diameters

while suppressing leakage into surrounding structures in close

proximity of vessels with large diameters.

The paper is organized as follows. In Section 2 we de-

scribe the radius estimation procedure. Subsequently we

present the general segmentation algorithm in Section 3. In

Section 4, we detail the incorporation of the radius estimate

into the segmentation method. We have applied our method

to different chest CT scans of patients referred for PE and

show segmentation results in comparison to results of the

same method with global parameters in Section 5. Finally,

we conclude in Section 6.

2. RADIUS ESTIMATION

To estimate the vessel radius at voxel x within the vessel, rays

are cast in different spatial directions. The gray level profiles

along these rays of a given length are analyzed to identify ves-

sel surface points (see Section 2.1). Given these points, a prin-

cipal component analysis (PCA) is applied by determining the

eigensystem of the covariance matrix. The radius estimation

r̃(x) can then be computed from the resulting eigenvalues.

In general, if x is located very close to the vessel surface,

the identified surface points will be unequally distributed in
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space, which will reduce the accuracy on the radius estimate.

Hence, the results of a first PCA are used to shift x towards

the center of the vessel and the results of a second PCA are

then used to determine the radius estimate resulting in a more

robust measure.

2.1. Mean shift-based ray analysis

To identify the vessel surface along a 1D ray, one can simply

detect the first voxel on the cast ray that is lower than a given

threshold T1 (e.g., T1 = 100 HU). However, it is difficult

to find a global threshold because small vessels might appear

darker in CT than non-vessel structures in close proximity of

large vessels such as airway walls or connective tissue. Hence

we seek to identify that point along the ray at which location

the intensity profile significantly decreases. For such an ob-

jective the mean shift algorithm [7] is very well suited as al-

ready shown in [6]. The mean shift procedure smoothes the

intensity data along the ray while preserving and sharpening

its discontinuities by calculating the mean shift vector

mK(x) =

N∑
i=1

xiK
(
x−xi

h

)

N∑
i=1

K
(
x−xi

h

) − x (1)

for each point until convergence. Then the starting point is

assigned with the intensity value of the point of convergence,

i.e., the corresponding mode of the probability density func-

tion. Here, N equals the number of feature vectors x1, ...,xN

consisting of the 1D spatial and intensity information. The

parameter h is the window radius of the used uniform kernel

K. To account for different spatial and intensity variances it

is reasonable to choose a kernel window with different radii

hs in the spatial and hr in the intensity domain.

To identify the surface point on the filtered 1D ray, we

look for the first significant change in intensity values on the

cast ray, which magnitude is larger than a predefined value

ΔI = Ibefore − Iafter ≥ 2 · hr. In case such a difference

is not observed, the position of the most significant intensity

decrease ΔImax is used instead. The results of the mean shift-

based boundary detection are exemplarily shown in compar-

ison to the threshold-based variant in Figure 1 using the pa-

rameters hr = 150 HU and hs = 3 mm.

3. FULLY-AUTOMATIC PULMONARY VESSEL
SEGMENTATION

Our fully-automatic segmentation approach consists of the

following steps and has been described in detail in [4]:

1. Lung segmentation

2. Core vessel identification, incl. seed point generation

3. Fuzzy vessel segmentation

(a) Threshold-based (b) Mean shift-based

Fig. 1. Detected vessel surface points ’+’ for position ’x’ dur-

ing radius estimation using different ray analysis features.

3.1. Lung Segmentation

There have been different methods proposed to create a lung

mask in CT data [2, 3, 8]. We obtain a lung segmentation

by starting a region growing from a seed point, automatically

selected within the trachea, in order to fill the lungs [2]. To

remove the trachea and major airways from the lung mask,

a region growing process with adaptive thresholds is started

from the trachea seed. Next, morphological closing is per-

formed on the segmented image to fill empty spaces caused

by, e.g., blood vessels. Finally, we slightly reduce the size of

the lung mask to prevent ribs or other structures near the lung

surface from being included in the lung mask.

3.2. Core vessel identification

Based on the masked CT image, we firstly segment the core

pulmonary vascular tree using a threshold-based approach. To

this end, a lower threshold T2 is applied and resulting com-

ponents smaller than a minimum volume Vmin in size are

eliminated. Compared to [2], we choose the parameters in

that way that we obtain a core segmentation with a very high

specificity, rather than a segmentation of the complete tree

structure. Subsequently each component is reduced to one

or more seed point by identifying local maxima in a distant

transformed image. Depending upon physical location and

the distance value, seed points are clustered together such that

the cluster representatives tend to be located toward the root

of each component. These representatives are then used as

seed points for the following step.

3.3. Fuzzy vessel segmentation

The fuzzy segmentation step creates an improved segmenta-

tion using the original, masked data along with the identified

seed points. Assuming the seed points are located inside the

pulmonary vessels the probability that a voxel belongs also to

the vascular tree is determined using the fuzzy connectedness

algorithm [5].
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An object O with its seed points si, i ∈ [0, n− 1] and

the background B are separated by dividing the set of voxels

present in the image volume in such a way that the ”belong-

ingness” of each object voxel to the seed points is larger than

the ”belongingness” of each background voxel.

The probability measure that two neighboring voxels c,d
belong to the same class or object is therefore defined by a

local fuzzy relation called ”affinity” μκ(c,d), which is de-

scribed in detail in Section 4. The ”strength of connected-

ness” of two distant voxels c,d along a certain path pc,d

within the image is simply the smallest pairwise local affinity

along this path. Here, the path pc,d from c to d is defined as a

sequence of m > 2 neighboring voxels
〈
c(1), c(2), ..., c(m)

〉
,

such that c(1) = c and c(m) = d. That means, the ”strength

of connectedness” equals:

μN (pc,d) = min
[
μκ(c(1), c(2)), ..., μκ(c(m−1), c(m))

]

(2)

As there are numerous possible paths within the scene,

the global connectivity μK(c,d) is then the largest of the

strengths of connectedness of all possible paths between c,d:

μK(c,d) = max
pj∈Pc,d

[μN (pj)] ∀ j (3)

where Pc,d denotes the set of all possible paths pj . The prob-

ability that a voxel x belongs to a vessel is hence:

PVessel(x) = max
si

[μK(x, si)] with PVessel(si) = 1 ∀ i

(4)

Note that even if PVessel drops below 0.5 for a voxel, this voxel

can still most likely belong to the vascular tree. In fact, an

appropriate threshold has to be chosen for binarization.

4. LOCALLY ADAPTIVE AFFINITY

The local affinity μκ(c,d) in Section 3.3 describes the like-

lihood that a voxel belongs to the class ”vessel” and that two

neighboring voxels c,d belong to the same class, respec-

tively. It has been shown in [4] that using an intensity-based

probability function will generally yield good segmentation

results:

μκ(c,d) =

⎧⎨
⎩

e
− 1

2σ2
1
( I(c)+I(d)

2 −μ1)2

if
I(c)+I(d)

2 < μ1

1 else

(5)

with I(c) being the intensity value at position c and μ1, σ
2
1

being the expected intensity value and variance of the used

Gaussian function. The expected intensity value is estimated

from the input data by averaging the intensity values of all

seed points si while the variance is set to a defined value

(σ1 = 150) that provided the best results in an empirical

study. However, one can observe that using such a proba-

bility function with global parameters tends to assign a larger

(a) Global parameters (b) Adaptive parameters

Fig. 2. Segmentation results using the proposed method on

two different patients. Using global parameters (a) will cause

the segmentation process to leak into non-vessel structures

while missing small vessels. These vessels are accurately seg-

mented using the adaptive approach (b).

probability measure PVessel to non-vessel structures in close

proximity to vessels with larger diameters than to small ves-

sels itself (see Fig. 2). The reason is that small vessels might

appear darker than, e.g., connective tissue or airway walls due

to various reasons such as partial volume effects and inhomo-

geneous contrast agent distribution. To avoid such behavior

we incorporate a radius estimation (see Section 2) into the

segmentation approach in that way, that we adapt the segmen-

tation parameters based on the radius estimate at the current

voxel position. In particular, we increase the variance param-

eter with decreasing radius estimate using a linear function

σadaptive =

⎧⎪⎨
⎪⎩

σmin r̃(x) > μr̃

σmax r̃(x) < r̃min

σmin + (μr̃ − r̃(x)) · σmax−σmin

μr̃−r̃min
else

(6)

with σmin being the minimal value for σ that results in an ac-

curate segmentation of larger vessels, e.g., σmin = 100, and

σmax being the maximal value, which equals the constant pa-

rameter setting (σmax = σ1). Additionally, μr̃ equals the av-

erage radius estimation of all seed points si and r̃min the min-

imal radius estimate for which the segmentation parameters

are adapted (r̃min = 2mm).
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Fig. 3. Quantitative segmentation results for two patients.

5. RESULTS

The proposed method has been evaluated on five different

contrast enhanced chest CT scans from clinical routine of

patients referred for PE and demonstrates promising results

(see Fig. 2). These data have been acquired using Siemens

Sensation 16/64 scanners with voxel sizes ranging from 0.55-

0.7 mm in x, y and 0.6-0.7 mm in z-direction. For quantita-

tive validation 30 manually selected regions of interests (ROI)

have been semi-automatically segmented using a combina-

tion of automatically, threshold-based created fore- and back-

ground seed points in combination with the random walker al-

gorithm [9], which has demonstrated to yield accurate results

applicable for validation purposes [10]. For each patient, six

randomly placed ROIs (two close to the hilum and four within

the periphery of the lung) of size 503 voxels have been used as

ground truth. The adaptive method demonstrates an improved

segmentation for all cases. The resulting receiver operating

characteristics (ROC) for varying thresholds for PVessel are ex-

emplarily shown in Figure 3. It can be seen that the sensitivity

(ratio of truly positive segmented voxels to all object voxels)

increases up to 5% at constant specificity (ratio of truly nega-

tive segmented voxels to all background voxels) (blue curves).

In some cases, however, the performance of both methods is

almost equivalent (red curves).

6. CONCLUSIONS

We have described a fully automatic approach to pulmonary

vessel segmentation in contrast enhanced CT data using the

fuzzy connectedness method. One can observe that segmenta-

tion methods using global parameters typically leak into non-

vessel structures in close proximity to larger vessels before

capturing small vessels. Hence, we locally adapt the segmen-

tation parameters of our fuzzy approach based on a radius es-

timation method. Using this adaptive method exhibits promis-

ing results based on a semi-automatically segmented ground

truth. We could show that the proposed adaptive method is

able to capture more small vessels while reducing leakage into

non-vessel structures than a non-adaptive method. However,

calculating the radius estimate for every considered voxel in-

creases the processing time significantly (from approx. 30s to

150s for a typical dataset with a given lung segmentation on a

Intel R©CoreTM2 CPU with 2.13GHz). In the future we there-

fore plan to group voxels and to estimate the radius value only

once for each group. Additionally the chosen relationship be-

tween radius estimate and segmentation parameters will be

examined in more detail on a larger database.
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